Effect of Humidity on Light-Activated NO and NO2 Gas Sensing by Hybrid Materials

Author:

Nasriddinov AbulkosimORCID,Rumyantseva MarinaORCID,Konstantinova ElizavetaORCID,Marikutsa ArtemORCID,Tokarev Sergey,Yaltseva Polina,Fedorova Olga,Gaskov Alexander

Abstract

Air humidity is one of the main factors affecting the characteristics of semiconductor gas sensors, especially at low measurement temperatures. In this work we analyzed the influence of relative humidity on sensor properties of the hybrid materials based on the nanocrystalline SnO2 and In2O3 and Ru (II) heterocyclic complex and verified the possibility of using such materials for NO (0.25–4.0 ppm) and NO2 (0.05–1.0 ppm) detection in high humidity conditions (relative humidity (RH) = 20%, 40%, 65%, 90%) at room temperature during periodic blue (λmax = 470 nm) illumination. To reveal the reasons for the different influence of humidity on the sensors’ sensitivity when detecting NO and NO2, electron paramagnetic resonance (EPR) spectroscopy and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) investigations were undertaken. It was established that the substitution of adsorbed oxygen by water molecules causes the decrease in sensor response to NO in humid air. The influence of humidity on the interaction of sensitive materials with NO2 is determined by the following factors: the increase in charge carrier’s concentration, the decrease in the number of active sites capable of interacting with gases, and possible substitution of chemisorbed oxygen with NO2− groups.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference44 articles.

1. WHO Guidelines for Indoor Air Quality: Selected Pollutantswww.euro.who.int_data/assets/pdf_file/0009/128169/e94535/pdf

2. Critical review of nitrogen monoxide sensors for exhaust gases of lean burn engines

3. Ozone, nitrogen dioxide and lung cancer: A review of some recent issues and problems

4. Chapter 20. Wet Deposition;Seinfeld,2006

5. Nitric Oxide and Airway Disease

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3