Radiosensitization by Gold Nanoparticles: Impact of the Size, Dose Rate, and Photon Energy

Author:

Morozov Kirill V.,Kolyvanova Maria A.,Kartseva Maria E.,Shishmakova Elena M.,Dement’eva Olga V.,Isagulieva Alexandra K.ORCID,Salpagarov Magomet H.,Belousov Alexandr V.ORCID,Rudoy Victor M.,Shtil Alexander A.,Samoylov Alexander S.,Morozov Vladimir N.ORCID

Abstract

Gold nanoparticles (GNPs) emerged as promising antitumor radiosensitizers. However, the complex dependence of GNPs radiosensitization on the irradiation conditions remains unclear. In the present study, we investigated the impacts of the dose rate and photon energy on damage of the pBR322 plasmid DNA exposed to X-rays in the presence of 12 nm, 15 nm, 21 nm, and 26 nm GNPs. The greatest radiosensitization was observed for 26 nm GNPs. The sensitizer enhancement ratio (SER) 2.74 ± 0.61 was observed at 200 kVp with 2.4 mg/mL GNPs. Reduction of X-ray tube voltage to 150 and 100 kVp led to a smaller effect. We demonstrate for the first time that the change of the dose rate differentially influences on radiosensitization by GNPs of various sizes. For 12 nm, an increase in the dose rate from 0.2 to 2.1 Gy/min led to a ~1.13-fold increase in radiosensitization. No differences in the effect of 15 nm GNPs was found within the 0.85–2.1 Gy/min range. For 21 nm and 26 nm GNPs, an enhanced radiosensitization was observed along with the decreased dose rate from 2.1 to 0.2 Gy/min. Thus, GNPs are an effective tool for increasing the efficacy of orthovoltage X-ray exposure. However, careful selection of irradiation conditions is a key prerequisite for optimal radiosensitization efficacy.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference67 articles.

1. Chemical radiosensitizers: the Journal history

2. Novel radiosensitizing anticancer therapeutics;Linkous;Anticancer Res.,2012

3. Cancer Radiosensitizers

4. Transition metal compounds as cancer radiosensitizers

5. Enhancement of radiosensitization by metal-based nanoparticles in cancer radiation therapy;Su;Cancer Biol. Med.,2014

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3