Filtering Characteristics of Phonon Polaritons Waves Based on Dielectric-h-BN-Dielectric Structure in Mid-Infrared Band

Author:

Cai MingORCID,Wang ShulongORCID,Liu Zhihong,Wang YindiORCID,Han TaoORCID,Liu HongxiaORCID

Abstract

Hyperbolic materials can be used to excite hyperbolic phonon polaritons in specific frequency bands, which causes abrupt interfaces with fluctuations of permittivity and different transmission characteristics at different incident wavelengths. Using the quasi-static approximation, the filtering characteristics of hexagonal Boron nitride (h-BN) and the transmission characteristics of phonon polaritons waves on a dielectric-h-BN-dielectric structure were studied in the paper. The results show that a smaller relative permittivity of the materials above and below h-BN and a thicker h-BN (ε1 = 1 (air), ε2 = 3.9 (SiO2), d = 100 nm) will lead to better filtering characteristics for different wavenumbers’ incident waves (propagation length from 0.0028 μm to 1.9756 μm). Simulation results in COMSOL validated the previous theoretical calculations. Moreover, the transmissivity and 3dB bandwidth of the type-II band were calculated with different structure widths. The maximum transmissivity of ~99% appears at a width of 100 nm, and the minimum 3dB bandwidth reaches 86.35 cm−1 at a structure width of 1300 nm. When the structure width meets or exceeds 1700 nm, the 3dB bandwidth is equal to 0, and its structure length is the limit for the filter application. These characteristics reveal the excellent filtering characteristics of the dielectric-h-BN-dielectric structure, and reveal the great potential of using the dielectric-h-BN-dielectric structure to design optical filter devices with excellent performance in mid-infrared bands.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3