Fabrication of Nanoyttria by Method of Solution Combustion Synthesis

Author:

Gizowska MagdalenaORCID,Piątek MilenaORCID,Perkowski Krzysztof,Konopka Gustaw,Witosławska Irena

Abstract

In the work the research on properties of an yttria nanopowder obtained by solution combustion synthesis (SCS) in terms of its application in ceramic technology is presented. In order to characterize the SCS reaction the decomposition of yttrium nitrate, glycine and their solution was investigated using differential thermal analysis coupled with FT-IR spectrometry of the gases emitted during the measurements. The product obtained in the SCS process was characterized in terms of its microstructure, particle size distribution and BET specific surface. Although the obtained powders showed nanoscaled structures, only after calcination at a temperature of 1100 °C nanosized particles were revealed. The calcined powder occurred in an agglomerated state (cumulants mean Zave = 1.3 µm). After milling particle size was successfully decreased to Zave = 0.28 µm. The deagglomerated powder was isostatically densified and tested for sintering ability. The obtained nanopowder showed very high sintering activity as the shrinkage onset was detected already at a temperature of about 1150 °C.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3