Enhanced Low-Neutron-Flux Sensitivity Effect in Boron-Doped Silicon

Author:

Yang GuixiaORCID,Wu Kunlin,Liu Jianyong,Zou Dehui,Li Junjie,Lu Yi,Lv Xueyang,Xu Jiayun,Qiao Liang,Liu Xuqiang

Abstract

Space particle irradiation produces ionization damage and displacement damage in semiconductor devices. The enhanced low dose rate sensitivity (ELDRS) effect caused by ionization damage has attracted wide attention. However, the enhanced low-particle-flux sensitivity effect and its induction mechanism by displacement damage are controversial. In this paper, the enhanced low-neutron-flux sensitivity (ELNFS) effect in Boron-doped silicon and the relationship between the ELNFS effect and doping concentration are further explored. Boron-doped silicon is sensitive to neutron flux and ELNFS effect could be greatly reduced by increasing the doping concentration in the flux range of 5 × 109–5 × 1010 n cm−2 s−1. The simulation based on the theory of diffusion-limited reactions indicated that the ELNFS in boron-doped silicon might be caused by the difference in the concentration of remaining vacancy-related defects (Vr) under different neutron fluxes. The ELNFS effect in silicon becomes obvious when the (Vr) is close to the boron doping concentration and decreased with the increase in boron doping concentration due to the remaining vacancy-related defects being covered. These conclusions are confirmed by the p+-n-p Si-based bipolar transistors since the ELNFS effect in the low doping silicon increased the reverse leakage of the bipolar transistors and the common-emitter current gain (β) dominated by highly doped silicon remained unchanged with the decrease in the neutron flux. Our work demonstrates that the ELNFS effect in boron-doped silicon can be well explained by noise diagnostic analysis together with electrical methods and simulation, which thus provide the basis for detecting the enhanced low-particle-flux damage effect in other semiconductor materials.

Funder

National Natural Science Foundation of China

Science Challenge Project

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neutron flux effect in silicon-based bipolar junction transistors exposed to californium-252;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3