Enhanced Microwave Absorption Bandwidth in Graphene-Encapsulated Iron Nanoparticles with Core–Shell Structure

Author:

Zhang Danfeng,Deng Yunfei,Han Congai,Zhu Haiping,Yan Chengjie,Zhang Haiyan

Abstract

Graphene-encapsulated iron nanoparticles (Fe(G)) hold great promise as microwave absorbers owing to the combined dielectric loss of the graphene shell and the magnetic loss of the ferromagnetic metal core. Transmission electron microscopy (TEM) revealed transition metal nanoparticles encapsulated by graphene layers. The microwave electromagnetic parameters and reflection loss (R) of the Fe(G) were investigated. Graphene provided Fe(G) with a distinctive dielectric behavior via interfacial polarizations taking place at the interface between the iron cores and the graphene shells. The R of Fe(G)/paraffin composites with different Fe(G) contents and coating thickness was simulated according to the transmit-line theory and the measured complex permittivity and permeability. The Fe(G)/paraffin composites showed an excellent microwave absorption with a minimum calculated R of −58 dB at 11 GHz and a 60 wt% Fe(G) loading. The composites showed a wide bandwidth (the bandwidth of less than −10 dB was about 11 GHz). The R of composites with 1–3 mm coating thickness was measured using the Arch method. The absorption position was in line with the calculated results, suggesting that the graphene-coated iron nanoparticles can generate a suitable electromagnetic match and provide an intense microwave absorption. Excellent Fe(G) microwave absorbers can be obtained by selecting optimum layer numbers and Fe(G) loadings in the composites.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3