Bi2WO6/C-Dots/TiO2: A Novel Z-Scheme Photocatalyst for the Degradation of Fluoroquinolone Levofloxacin from Aqueous Medium

Author:

Sharma SheljaORCID,Ibhadon Alex O.,Francesconi M. GraziaORCID,Mehta Surinder Kumar,Elumalai SasikumarORCID,Kansal Sushil Kumar,Umar AhmadORCID,Baskoutas SotiriosORCID

Abstract

Photocatalytic materials and semiconductors of appropriate structural and morphological architectures as well as energy band gaps are materials needed for mitigating current environmental problems, as these materials have the ability to exploit the full spectrum of solar light in several applications. Thus, constructing a Z-scheme heterojunction is an ideal approach to overcoming the limitations of a single component or traditional heterogeneous catalysts for the competent removal of organic chemicals present in wastewater, to mention just one of the areas of application. A Z-scheme catalyst possesses many attributes, including enhanced light-harvesting capacity, strong redox ability and different oxidation and reduction positions. In the present work, a novel ternary Z-scheme photocatalyst, i.e., Bi2WO6/C-dots/TiO2, has been prepared by a facile chemical wet technique. The prepared solar light-driven Z-scheme composite was characterized by many analytical and spectroscopic practices, including powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), N2 adsorption–desorption isotherm, Fourier-transform infrared spectroscopy (FT-IR), photoluminescence (PL) and UV-vis diffuse reflectance spectroscopy (DRS). The photocatalytic activity of the Bi2WO6/C-dots/TiO2 composite was evaluated by studying the degradation of fluoroquinolone drug, levofloxacin under solar light irradiation. Almost complete (99%) decomposition of the levofloxacin drug was observed in 90 min of sunlight irradiation. The effect of catalyst loading, initial substrate concentration and pH of the reaction was also optimized. The photocatalytic activity of the prepared catalyst was also compared with that of bare Bi2WO6, TiO2 and TiO2/C-dots under optimized conditions. Scavenger radical trap studies and terephthalic acid (TPA) fluorescence technique were done to understand the role of the photo-induced active radical ions that witnessed the decomposition of levofloxacin. Based on these studies, the plausible degradation trail of levofloxacin was proposed and was further supported by LC-MS analysis.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3