Impact of Bio-Based (Tannins) and Nano-Scale (CNC) Additives on Bonding Properties of Synthetic Adhesives (PVAc and MUF) Using Chestnut Wood from Young Coppice Stands

Author:

Marini Francesco,Zikeli FlorianORCID,Corona PiermariaORCID,Vinciguerra Vittorio,Manetti Maria ChiaraORCID,Portoghesi Luigi,Scarascia Mugnozza Giuseppe,Romagnoli ManuelaORCID

Abstract

Sustainability and ecotoxicity issues call for innovations regarding eco-friendly adhesives in the production of biocomposite wood materials, and solutions involving nano-scale and bio-based compounds represent a valid and promising target. One possible approach is to increase the performance of adhesives such as polyvinyl acetate (PVAc) or melamine-urea-formaldehyde (MUF) by means of nanoparticles in order to obtain a material with better mechanical and environmental resistance. When applying cellulose-based nanoparticles or tannin, the concept of a circular economy is successfully implemented into the forest/wood value chain, and chances are created to develop new value chains using byproducts of forestry operations. In this study, assortments coming from young sweet chestnut (Castanea sativa Mill.) coppice stands were utilized for the preparation of single lap joint assemblies using different commercial adhesives (PVAc, MUF) and cellulose nanocrystals (CNC) and tannin as additives. The results showed that addition of CNC and tannin to PVAc glue increased tensile shear strength in lap joint tests presenting a promising base for future tests regarding the addition of CNC and tannin in MUF or PVAc adhesive formulations. Unfortunately, the tested bio-based additives did not reveal the same encouraging results when tested in the wet state.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference44 articles.

1. Solid wood and wood based composites: The challenge of sustainability looking for a short and smart supply chain;Romagnoli,2019

2. Chemical composition and resistance of Italian stone pine ( Pinus pinea L.) wood against fungal decay and wetting

3. Spectro-topochemical investigation of the location of polyphenolic extractives (tannins) in chestnut wood structure and ultrastructure

4. Gaps and perspectives for the improvements of sweet chestnut forest-wood chain in italy: A commentary;Marini;Ann. Silvic. Res.,2020

5. Physical and mechanical characteristics of poor-quality wood after heat treatment

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3