The Application of Wireless Underground Sensor Networks to Monitor Seepage inside an Earth Dam

Author:

Liang Min-Chih1ORCID,Chen Hung-En1ORCID,Tfwala Samkele S.2ORCID,Lin Yu-Feng3ORCID,Chen Su-Chin14ORCID

Affiliation:

1. Department of Soil and Water Conservation, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan

2. Department of Geography, Environmental Science and Planning, University of Eswatini, Kwaluseni M201, Eswatini

3. Department of Civil and Construction Engineering, National Taiwan University of Science and Technology, No.43, Keelung Rd., Sec.4, Da’an Dist., Taipei City 106335, Taiwan

4. Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan

Abstract

Earth dams or embankments are susceptible to instability due to internal seepage, piping, and erosion, which can lead to catastrophic failure. Therefore, monitoring the seepage water level before the dam collapses is an important task for early warning of dam failure. Currently, there are hardly any monitoring methods that use wireless underground transmission to monitor the water content inside earth dams. Real-time monitoring of changes in the soil moisture content can more directly determine the water level of seepage. Wireless transmission of sensors buried underground requires signal transmission through the soil medium, which is more complex than traditional air transmission. Henceforth, this study establishes a wireless underground transmission sensor that overcomes the distance limitation of underground transmission through a hop network. A series of feasibility tests were conducted on the wireless underground transmission sensor, including peer-to-peer transmission tests, multi-hop underground transmission tests, power management tests, and soil moisture measurement tests. Finally, field seepage tests were conducted to apply wireless underground transmission sensors to monitor the internal seepage water level before an earth dam failure. The findings show that wireless underground transmission sensors can achieve the monitoring of seepage water levels inside earth dams. In addition, the results supersede those of a conventional water level gauge. This could be crucial in early warning systems during the era of climate change, which has caused unprecedented flooding events.

Funder

NSTC

MOST

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3