Friction Stir Processed AA5754-Al2O3 Nanocomposite: A Study on Tribological Characteristics

Author:

Rohim M. Nafea M.1ORCID,Abdullah Mahmoud E.1ORCID,Mohammed Moustafa M.1ORCID,Kubit Andrzej2ORCID,Aghajani Derazkola Hamed3ORCID

Affiliation:

1. Mechanical Department, Faculty of Technology and Education, Beni-Suef University, Beni-Suef 62511, Egypt

2. Department of Manufacturing and Production Engineering, Rzeszow University of Technology, Al. Powst. Warszawy 8, 35-959 Rzeszow, Poland

3. Nonlinear Solid Mechanics, Faculty of Engineering Technology, University of Twente, 7500-7549 Enschede, The Netherlands

Abstract

This study investigates the tribological properties of an AA 5754 aluminum alloy composite reinforced with the nanopowder of Al2O3, fabricated using the friction stir processing (FSP) technique with blind holes. The aim is to analyze the effects of varying the tool rotational speed (rpm) and blind hole diameter on the wear and friction behavior of the produced composite. A pin-on disk test is conducted under dry conditions and room temperature to assess the tribological properties against steel. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS) is employed to examine the worn and wear surfaces of the produced composites post test. The results indicate that increasing the applied load results in a decrease in the coefficient of friction (COF), with values ranging from 0.775 to 0.852 for 10 N and 0.607 to 0.652 for 20 N. Moreover, the wear rate diminishes with higher Al2O3 content and optimal FSP tool rotation (1280 rpm). Hardness analysis reveals variations between 33–42 HV and 35–39 HV, influenced by nanoparticle distribution. The composite demonstrates superior wear resistance compared to raw AA5754 aluminum due to its reinforced nature. However, high FSP tool rotation rates lead to abrasive wear and surface cracks. These findings offer insights into optimizing FSP parameters to enhance the tribological performance of nano-reinforced aluminum alloys.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3