Development, Dielectric Response, and Functionality of ZnTiO3/BaTiO3/Epoxy Resin Hybrid Nanocomposites

Author:

Patsidis Anastasios C.1ORCID,Koufakis Eleftherios I.1,Mathioudakis Georgios N.2ORCID,Vryonis Orestis13ORCID,Psarras Georgios C.1ORCID

Affiliation:

1. Smart Materials & Nanodielectrics Laboratory, Department of Materials Science, School of Natural Sciences, University of Patras, 26504 Patras, Greece

2. Institute of Chemical Engineering Sciences (ICE-HT), Foundation for Research & Technology-Hellas (FORTH), Stadiou Str., Platani, P.O. Box 1414, 26504 Patras, Greece

3. Tony Davies High Voltage Laboratory, Department of Electronics and Computer Science, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK

Abstract

In the present work, hybrid nanocomposites of an epoxy resin reinforced with ZnTiO3 and BaTiO3 nanoparticles, at various filler contents, were fabricated and studied. The successful integration of ceramic nanofillers and the fine distribution of nanoparticles were confirmed via X-ray Diffraction patterns and Scanning Electron Microscopy images, respectively. Dielectric properties and related relaxation phenomena were investigated via Broadband Dielectric Spectroscopy in a wide range of frequencies and temperatures. Data analysis showed that dielectric permittivity increases with filler content, although optimum performance does not correspond to the maximum ZnTiO3 content. Four relaxation processes were observed and attributed to interfacial polarization (IP) (at low frequencies and high temperatures), glass-to-rubber transition (α-relaxation) of the epoxy matrix (at intermediate frequencies and temperatures), and local rearrangements of polar side groups of the macromolecules (β-relaxation) and small flexible groups of the main polymer chain (γ-relaxation) occurring at low temperatures and high frequencies. The ability of hybrid nanocomposites to store and retrieve energy was studied under dc conditions by employing a charging/discharging sequence. The stored and retrieved energy increases with filler content and charging voltage. The optimum ability of energy recovering, shown by the epoxy/7 phr ZnTiO3/7 phr BaTiO3 nanocomposite, ranges between 30 and 50 times more than the matrix, depending on the time instant. The employed nanoparticles induce piezoelectric properties in the nanocomposites, as found by the increase in the piezoelectric coefficient with filler content.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3