Observation Experiment of Wind-Driven Rain Harvesting from a Building Wall

Author:

Yoo ChulsangORCID,Cho EunsaemORCID,Lee Munseok,Kim Soeun

Abstract

Rainwater harvesting is generally assumed to collect rainwater from the roof or ground. However, this study shows that this structural limitation of rainwater harvesting can be overcome by employing a building wall. The rainfall on a building wall is called wind-driven rain (WDR), which is the target for the rainwater harvesting addressed in this study. To prove the possibility of WDR harvesting, this study prepared three different gauges to collect the rainwater from a building wall. These gauges are like miniature buildings used to collect the WDR on the building wall inside a storage tank at the bottom. The WDR harvesting gauges were located on the rooftop of the Engineering Building, Korea University, and a total of 15 rainfall events were observed during the rainy season in Korea from June to September 2020. Our analysis of the collected data confirms the significant role of the building wall in rainwater harvesting. For a building height of 0.5 m, the rainwater additionally harvested from the wall was about 40% that from the roof, which became about 70% for the height of 1.0 m and about 90% for the height of 1.5 m. In addition, Cho et al. (2020)’s empirical equation for estimating the WDR is found to be useful for estimating the amount of rainwater harvested from the building wall. The correlation coefficients between the measurements and estimates were estimated to be high as 0.94, 0.92 and 0.91 for building heights of 0.5 m, 1.0 m, and 1.5 m, respectively.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3