Interface Design of Head-Worn Display Application on Condition Monitoring in Aviation

Author:

Zhang XiaoyanORCID,Cheng Jia’ao,Xue Hongjun,Chen Siyu

Abstract

Head-worn displays (HWDs) as timely condition monitoring are increasingly used in aviation. However, interface design characteristics that mainly affect HWD use have not been fully investigated. The aim of this study was to examine the effects of several important interface design characteristics (i.e., the distance between calibration lines and the layouts of vertical and horizontal scale belts) on task performance and user preference between different conditions of display, i.e., HWD or head-up display (HUD). Thirty participants joined an experiment in which they performed flight tasks. In the experiment, the calibration lines’ distance was set to three different levels (7, 9 and 11 mrad), and the scale belt layouts included horizontal and vertical scale belt layouts. The scale belts were set as follows: the original vertical scale belt width was set as L, and the horizontal scale belt height as H. The three layouts of the vertical calibration scale belt used were 3/4H, H and 3H/2. Three layouts of horizontal calibration scale belts were selected as 3L/4, L and 3L/2. The results indicated that participants did better with the HWD compared to the HUD. Both layouts of vertical and horizontal scale belts yielded significant effects on the users’ task performance and preference. Users showed the best task performance while the vertical calibration scale belts were set as H and horizontal calibration scale belts were set as L, and users generally preferred interface design characteristics that could yield an optimal performance. These findings could facilitate the optimal design of usable head-worn-display technology.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3