Utilizing Spectral, Structural and Textural Features for Estimating Oat Above-Ground Biomass Using UAV-Based Multispectral Data and Machine Learning

Author:

Dhakal Rakshya1,Maimaitijiang Maitiniyazi2ORCID,Chang Jiyul3ORCID,Caffe Melanie3ORCID

Affiliation:

1. Plant Breeding Graduate Program, University of Florida, Gainesville, FL 32608, USA

2. Department of Geography and Geospatial Sciences, South Dakota State University, Brookings, SD 57007, USA

3. Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA

Abstract

Accurate and timely monitoring of biomass in breeding nurseries is essential for evaluating plant performance and selecting superior genotypes. Traditional methods for phenotyping above-ground biomass in field conditions requires significant time, cost, and labor. Unmanned Aerial Vehicles (UAVs) offer a rapid and non-destructive approach for phenotyping multiple field plots at a low cost. While Vegetation Indices (VIs) extracted from remote sensing imagery have been widely employed for biomass estimation, they mainly capture spectral information and disregard the 3D canopy structure and spatial pixel relationships. Addressing these limitations, this study, conducted in 2020 and 2021, aimed to explore the potential of integrating UAV multispectral imagery-derived canopy spectral, structural, and textural features with machine learning algorithms for accurate oat biomass estimation. Six oat genotypes planted at two seeding rates were evaluated in two South Dakota locations at multiple growth stages. Plot-level canopy spectral, structural, and textural features were extracted from the multispectral imagery and used as input variables for three machine learning models: Partial Least Squares Regression (PLSR), Support Vector Regression (SVR), and Random Forest Regression (RFR). The results showed that (1) in addition to canopy spectral features, canopy structural and textural features are also important indicators for oat biomass estimation; (2) combining spectral, structural, and textural features significantly improved biomass estimation accuracy over using a single feature type; (3) machine learning algorithms showed good predictive ability with slightly better estimation accuracy shown by RFR (R2 = 0.926 and relative root mean square error (RMSE%) = 15.97%). This study demonstrated the benefits of UAV imagery-based multi-feature fusion using machine learning for above-ground biomass estimation in oat breeding nurseries, holding promise for enhancing the efficiency of oat breeding through UAV-based phenotyping and crop management practices.

Funder

South Dakota Crop Improvement Association

South Dakota Agricultural Experiment Station

USDA NIFA

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3