Changes in Magnitude and Timing of High Flows in Large Rain-Dominated Watersheds in the Cold Region of North-Eastern China

Author:

Duan LiangliangORCID,Cai Tijiu

Abstract

Global warming-induced earlier streamflow timing and changes in flood risk have been widely reported in snow-dominated regions where the land surface hydrology is dominated by winter snow accumulation and spring melt. However, impacts of climate warming on flow regime in the cold regions dominated by monsoonal rain during the warm season have received little attention in the literature. In this study, the responses of magnitude and timing of high flows to climate warming were analyzed by using a paired-year approach based on the hydrometeorological data of two large rain-dominated watersheds in the cold region of north-eastern China in the past approximately four decades (1975–2013). The results indicated that high flow timings of two watersheds both exhibited significant negative trends associated with the significant increasing trends in air temperature and spring rain over the study period. The results from paired-year approach indicated average timings of high flows in the warming years were significantly advanced by 21 and 25 days in Upper Huma River (UHR) and Ganhe River (GR) watersheds, respectively, which was at least partly attributed to the more frequent occurrence of spring snowmelt/rain generated high flows because of climate warming-induced earlier snowmelt and increased spring rain. The average magnitude of high flows decreased by 13.7% and 14.0% in the warming years compared with those in the reference years in the UHR and GR watersheds, respectively. These findings have implications for water resource management in the study region and similar rain-dominated cold regions across the globe.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3