MT-GCNN: Multi-Task Learning with Gated Convolution for Multiple Transmitters Localization in Urban Scenarios

Author:

Wang WenyuORCID,Zhu LeiORCID,Huang ZhenORCID,Li BaozhuORCID,Yu Lu,Cheng Kaixin

Abstract

With the advance of the Internet of things (IoT), localization is essential in varied services. In urban scenarios, multiple transmitters localization is faced with challenges such as nonline-of-sight (NLOS) propagation and limited deployment of sensors. To this end, this paper proposes the MT-GCNN (Multi-Task Gated Convolutional Neural Network), a novel multiple transmitters localization scheme based on deep multi-task learning, to learn the NLOS propagation features and achieve the localization. The multi-task learning network decomposes the problem into a coarse localization task and a fine correction task. In particular, the MT-GCNN uses an improved gated convolution module to extract features from sparse sensing data more effectively. In the training stage, a joint loss function is proposed to optimize the two branches of tasks. In the testing stage, the well-trained MT-GCNN model predicts the classified grids and corresponding biases jointly to improve the overall performance of localization. In the urban scenarios challenged by NLOS propagation and sparse deployment of sensors, numerical simulations demonstrate that the proposed MT-GCNN framework has more accurate and robust performance than other algorithms.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference36 articles.

1. Analysis of Wireless Localization in Nonline-of-Sight Conditions;Liu;IEEE Trans. Veh. Technol.,2013

2. Improved Robust TOA-Based Localization via NLOS Balancing Parameter Estimation;Chen;IEEE Trans. Veh. Technol.,2019

3. Three Passive TDOA-AOA Receivers-Based Flying-UAV Positioning in Extreme Environments;Xu;IEEE Sens. J.,2020

4. Enhanced RSS-Based UAV Localization Via Trajectory and Multi-Base Stations;Li;IEEE Commun. Lett.,2021

5. Data Association for Multi-Target Elliptic Localization in Distributed MIMO Radars;Kazemi;IEEE Commun. Lett.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3