Post-Processing of Raw Data Recorded Continuously Using a FORS—Fibre-Optic Rotational Seismograph

Author:

Sakowicz BartoszORCID,Kamiński Marek,Dudek MichałORCID,Kurzych Anna T.ORCID,Jaroszewicz Leszek R.ORCID

Abstract

Modern optoelectronic devices use the advantage of digital systems for data processing aimed at delivering reliable information. However, since commonly used DACs have limited accuracy, some artefacts can be observed in data streams, especially in systems designed for continuous, long-term process monitoring. In this paper, the authors’ experience with data enhancement using a fibre-optic rotational seismograph (FORS) operating in a closed-loop mode is presented and discussed. Generally, two kinds of enhancement are described. The first one uses suitable filtering techniques adequate for FORS noise investigation, as well as a suitable data resampling method for transmitted data file size reduction. The second one relates to the artefacts observed during data recording in real time. The recording starting point is triggered when the detected signal exceeds a middle signal level and, therefore, the existence of artefacts generally disturbs the recording process. Although the artefacts are easily recognised by human eyes even at first sight, their automatic elimination is not so easy. In this paper, the authors propose a new concept of signal filtering to solve the above problem.

Funder

National Centre for Research and Development

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference49 articles.

1. Cusano, A., Consales, M., Crescitelli, A., and Ricciardi, A. (2015). Lab-on-Fibre Technology, Springer.

2. Photonic crystal fibers;Science,2003

3. Photonic crystal fibers;Nature,2003

4. Ziemann, O., Krauser, J., Zamzow, P.E., and Daum, W. (2008). POF Handbook: Optical SHORT Range Transmission Systems, Springer.

5. Microstructured polymer optical fibre;Opt. Express,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3