An Integrative Framework for Online Prognostic and Health Management Using Internet of Things and Convolutional Neural Network

Author:

Qu YuanjuORCID,Ming Xinguo,Qiu Siqi,Zheng Maokuan,Hou Zengtao

Abstract

With the development of the internet of things (IoTs), big data, smart sensing technology, and cloud technology, the industry has entered a new stage of revolution. Traditional manufacturing enterprises are transforming into service-oriented manufacturing based on prognostic and health management (PHM). However, there is a lack of a systematic and comprehensive framework of PHM to create more added value. In this paper, the authors proposed an integrative framework to systematically solve the problem from three levels: Strategic level of PHM to create added value, tactical level of PHM to make the implementation route, and operational level of PHM in a detailed application. At the strategic level, the authors provided the innovative business model to create added value through the big data. Moreover, to monitor the equipment status, the health index (HI) based on a condition-based maintenance (CBM) method was proposed. At the tactical level, the authors provided the implementation route in application integration, analysis service, and visual management to satisfy the different stakeholders’ functional requirements through a convolutional neural network (CNN). At the operational level, the authors constructed a self-sensing network based on anti-inference and self-organizing Zigbee to capture the real-time data from the equipment group. Finally, the authors verified the feasibility of the framework in a real case from China.

Funder

National Natural Science Foundation of China

Major Project for Aero engines and Gas turbines

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3