Some Order Preserving Inequalities for Cross Entropy and Kullback–Leibler Divergence

Author:

Sbert Mateu,Chen Min,Poch Jordi,Bardera AntonORCID

Abstract

Cross entropy and Kullback–Leibler (K-L) divergence are fundamental quantities of information theory, and they are widely used in many fields. Since cross entropy is the negated logarithm of likelihood, minimizing cross entropy is equivalent to maximizing likelihood, and thus, cross entropy is applied for optimization in machine learning. K-L divergence also stands independently as a commonly used metric for measuring the difference between two distributions. In this paper, we introduce new inequalities regarding cross entropy and K-L divergence by using the fact that cross entropy is the negated logarithm of the weighted geometric mean. We first apply the well-known rearrangement inequality, followed by a recent theorem on weighted Kolmogorov means, and, finally, we introduce a new theorem that directly applies to inequalities between K-L divergences. To illustrate our results, we show numerical examples of distributions.

Funder

Ministerio de Economía y Competitividad

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference10 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3