Effects of Environmental Conditions and Bed Configuration on Oxygen Transfer Efficiency in Aerated Constructed Wetlands

Author:

Vera-Puerto IsmaelORCID,Campal José,Martínez Sandra,Cortés-Rico Laura,Coy Hadher,Tan Sheyie,Arias Carlos A.ORCID,Baquero-Rodríguez Gustavo,Rosso DiegoORCID

Abstract

This research evaluated the oxygen transfer efficiency in beds to be used as aerated constructed wetlands. The research methods included oxygen transfer efficiency evaluations in several bed configurations using diffused aeration systems. Experiments were conducted at two locations with different environmental conditions: a) Talca (Chile), 120 m above sea level (m.a.s.l.), 0.99 Atm and b) Cajicá (Colombia), 2550 m.a.s.l., 0.76 Atm. A column with only clean water and three bed configurations representing aerated constructed wetlands were evaluated. These configurations included: (a) coarse gravel, (b) coarse gravel with an empty core in the middle (inner container), and (c) fine gravel. Three airflow rates were evaluated: (a) low, 0.7 L/min; (b) medium, 2.5 L/min; and (c) high, 3.6 L/min. The overall oxygen mass transfer coefficient, standard oxygen transfer rate, and standard oxygen transfer efficiency were the variables calculated from the oxygen transfer evaluation tests. The research results indicated that in diffused aeration systems, oxygen transfer efficiency was negatively influenced by environmental conditions, particularly altitude, which limits the driving force for oxygen transfer into water. Furthermore, the results showed that the size of the gravel used in the bed is related to the oxygen transfer efficiency: the larger the gravel size, the higher the oxygen transfer, regardless of the altitude. Finally, research regarding oxygen transfer in aerated constructed wetlands has signaled the need for a standard procedure for aeration testing, and this work suggests a new methodology.

Funder

Academic and Student Mobility of the Pacific Alliance (Programa de Movilidad Estudiantil y Académica de la Alianza del Pacífico

Agencia Nacional de Investigación y Desarrollo

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3