High Spatiotemporal Rugged Land Surface Temperature Downscaling over Saihanba Forest Park, China

Author:

Ouyang Xiaoying,Dou Youjun,Yang Jinxin,Chen Xi,Wen Jianguang

Abstract

Satellite-derived rugged land surface temperature (LST) is an important parameter indicating the status of the Earth’s surface energy budget and its seasonal/temporal dynamic change. However, existing LST products from rugged areas are more prone to error when supporting applications in mountainous areas and Earth surface processes that occur at high spatial and temporal resolutions. This research aimed to develop a method for generating rugged LST with a high temporal and spatial resolution by using an improved ensemble LST model combining three regressors, including a random forest, a ridge, and a support vector machine. Different combinations of high-resolution input parameters were also considered in this study. The input datasets included Moderate Resolution Imaging Spectroradiometer (MODIS) LST datasets (MxD11A1) for nighttime, temporal Sentinel-2 Multispectral Instrument (MSI) datasets, and digital elevation model (DEM) datasets. The 30 m rugged LST datasets derived were compared against an in situ LST dataset obtained at Saihanba Forest Park (SFP) sites and an ASTER-derived 90 m LST, respectively. The results with in situ measurements demonstrated significant LST details, with an R2 higher than 0.95 and RMSE around 3.00 K for both Terra/MOD- and Aqua/MYD-based LST datasets, and with slightly better results being obtained from the Aqua/MYD-based LST than that from Terra/MOD. The inter-comparison results with ASTER LST showed that over 80% of the pixels of the difference image for the two datasets were within 2 K. In light of the complex topography and distinct atmospheric conditions, these comparison results are encouraging. The 30 m LST from the method proposed in this study also depicts the seasonality of rugged surfaces.

Funder

National Natural Science Foundation of China

the National Key R&D Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3