Abstract
Rotated object detection in aerial images is still challenging due to arbitrary orientations, large scale and aspect ratio variations, and extreme density of objects. Existing state-of-the-art rotated object detection methods mainly rely on angle-based detectors. However, angle-based detectors can easily suffer from a long-standing boundary problem. To tackle this problem, we propose a purely angle-free framework for rotated object detection, called Point RCNN. Point RCNN is a two-stage detector including both PointRPN and PointReg which are angle-free. Given an input aerial image, first, the backbone-FPN extracts hierarchical features, then, the PointRPN module generates an accurate rotated region of interests (RRoIs) by converting the learned representative points of each rotated object using the MinAreaRect function of OpenCV. Motivated by RepPoints, we designed a coarse-to-fine process to regress and refine the representative points for more accurate RRoIs. Next, based on the learned RRoIs of PointRPN, the PointReg module learns to regress and refine the corner points of each RRoI to perform more accurate rotated object detection. Finally, the final rotated bounding box of each rotated object can be attained based on the learned four corner points. In addition, aerial images are often severely unbalanced in categories, and existing rotated object detection methods almost ignore this problem. To tackle the severely unbalanced dataset problem, we propose a balanced dataset strategy. We experimentally verified that re-sampling the images of the rare categories can stabilize the training procedure and further improve the detection performance. Specifically, the performance was improved from 80.37 mAP to 80.71 mAP in DOTA-v1.0. Without unnecessary elaboration, our Point RCNN method achieved new state-of-the-art detection performance on multiple large-scale aerial image datasets, including DOTA-v1.0, DOTA-v1.5, HRSC2016, and UCAS-AOD. Specifically, in DOTA-v1.0, our Point RCNN achieved better detection performance of 80.71 mAP. In DOTA-v1.5, Point RCNN achieved 79.31 mAP, which significantly improved the performance by 2.86 mAP (from ReDet’s 76.45 to our 79.31). In HRSC2016 and UCAS-AOD, our Point RCNN achieved higher performance of 90.53 mAP and 90.04 mAP, respectively.
Subject
General Earth and Planetary Sciences
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献