Extraction of Photovoltaic Plants Using Machine Learning Methods: A Case Study of the Pilot Energy City of Golmud, China

Author:

Chen ZhenghangORCID,Kang Yawen,Sun Zhongxiao,Wu Feng,Zhang Qian

Abstract

Solar energy is an abundant, clean, and renewable source that can mitigate global climate change, environmental pollution, and energy shortage. However, comprehensive datasets and efficient identification models for the spatial distribution of photovoltaic (PV) plants locally and globally over time remain limited. In the present study, a model that combines original spectral features, PV extraction indexes, and terrain features for the identification of PV plants is established based on the pilot energy city Golmud in China, which covers 71,298.7 km2 and has the highest density of PV plants in the world. High-performance machine learning algorithms were integrated with PV plant extraction models, and performances of the XGBoost, random forest (RF), and support vector machine (SVM) algorithms were compared. According to results from the investigations, the XGBoost produced the highest accuracy (OA = 99.65%, F1score = 0.9631) using Landsat 8 OLI imagery. The total area occupied by PV plants in Golmud City in 2020 was 10,715.85 ha based on the optimum model. The model also revealed that the area covered by the PV plant park in the east of Golmud City increased by approximately 10% from 2018 (5344.2 ha) to 2020 (5879.34 ha). The proposed approach in this study is one of the first attempts to identify time-series large-scale PV plants based on a pixel-based machine learning algorithm with medium-resolution free images in an efficient way. The study also confirmed the effectiveness of combining original spectral features, PV extraction indexes, and terrain features for the identification of PV plants. It will shed light on larger- and longer-scale identification of PV plants around the world and the evaluation of the associated dynamics of PV plants.

Funder

National Science Foundation of China

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3