Remote Sensing of Riparian Ecosystems

Author:

Rusnák MilošORCID,Goga TomášORCID,Michaleje Lukáš,Šulc Michalková Monika,Máčka ZdeněkORCID,Bertalan LászlóORCID,Kidová Anna

Abstract

Riparian zones are dynamic ecosystems that form at the interface between the aquatic and terrestrial components of a landscape. They are shaped by complex interactions between the biophysical components of river systems, including hydrology, geomorphology, and vegetation. Remote sensing technology is a powerful tool useful for understanding riparian form, function, and change over time, as it allows for the continuous collection of geospatial data over large areas. This paper provides an overview of studies published from 1991 to 2021 that have used remote sensing techniques to map and understand the processes that shape riparian habitats and their ecological functions. In total, 257 articles were reviewed and organised into six main categories (physical channel properties; morphology and vegetation or field survey; canopy detection; application of vegetation and water indices; riparian vegetation; and fauna habitat assessment). The majority of studies used aerial RGB imagery for river reaches up to 100 km in length and Landsat satellite imagery for river reaches from 100 to 1000 km in length. During the recent decade, UAVs (unmanned aerial vehicles) have been widely used for low-cost monitoring and mapping of riverine and riparian environments. However, the transfer of RS data to managers and stakeholders for systematic monitoring as a source of decision making for and successful management of riparian zones remains one of the main challenges.

Funder

Slovak Scientific Grant Agency VEGA

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3