Evolution Analysis of Ecological Networks Based on Spatial Distribution Data of Land Use Types Monitored by Remote Sensing in Wuhan Urban Agglomeration, China, from 2000 to 2020

Author:

Lu Yanchi,Liu YaolinORCID,Huang Dan,Liu Yanfang

Abstract

Construction and protection of ecological networks (ENs) is considered to be an effective means to curb habitat fragmentation and strengthen landscape connectivity. In this study, a complete evaluation framework of ENs based on “quality–function–structure” was proposed to support the formulation of protection strategies for ENs. First, we built the ENs of Wuhan urban agglomeration (WUA) from 2000 to 2020 based on the advantages of circuit theory and remote sensing data of land use monitoring. The results showed that land development activities are an important driving force for the temporal and spatial evolution of global ENs. Forest fragmentation, transitional urban expansion, and agricultural reclamation were important inducements for the shrinkage of ecological sources. They may also increase the resistance of species migration, which will lead to qualitative change and even fracture of ecological corridors. Second, circuit theory, centrality index, and complex network theory were applied to evaluate the quality defects, functional connectivity, and topology characteristics of ENs in WUA, respectively, from 2000 to 2020. The results showed that the antagonism between ecological corridors and land development activities led to ecological quality defects (ecological barriers and pinchpoints). Different land development models had differential effects on centrality indexes. Moreover, the main trunk in the northern Dabie Mountains and the southern Mufu mountains was developed, while the secondary trunks were abundant in the middle of WUA. Finally, we proposed protection strategies for ENs based on the coupling of the “quality–function–structure” of WUA in 2020. It is suggested that all ecological sources must be included in nature reserves to prevent natural or manmade erosion. The key areas to be repaired were determined through the quality evaluation of ecological corridors. The priority of construction and protection of ecological corridors was determined by coupling two topological structures and functions. We argue that specific protection strategies and directions can be determined according to the construction objectives of local ENs.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3