Mapping Climate Zones of Iran Using Hybrid Interpolation Methods

Author:

Asadi Oskouei Ebrahim,Delsouz Khaki Bahareh,Kouzegaran Saeedeh,Navidi Mir Naser,Haghighatd Masoud,Davatgar Naser,Lopez-Baeza ErnestoORCID

Abstract

Climate plays a key role in ecosystem services. Understanding microclimate change can be a significant help in making the right decision for ecosystems and buffering the effects of global warming. Given the large distances between meteorological stations and the changes in the climate variables within short distances, such variations cannot be detected just by using observed meteorological data. This study aimed at determining the spatial structure of the mean annual temperature, the annual average precipitation, and the climate zoning of Iran using data from 3825 stations from 2002 to 2016.The multivariate regression demonstrated the dependence of these variables on longitude, latitude, and elevation. Regression-kriging indicated a decline in temperature from east to west and northwest in high-altitude areas, while most precipitation values were observed over the Caspian Sea coastline and the Zagros Mountains. Climatic zoning showed that using auxiliary variables was very effective in detecting 24 climatic classes and understating the climate diversity in Iran. Hot to very hot and arid to very arid climate classes occupy the largest part of Iran, including the southeastern and southern desert regions. According to the generated climatic map, the large climatic diversity of Iran needs accurate policymaking regarding cultivation patterns and biodiversity. Visual comparisons of climatic zones with four remotely sensed agricultural-related variables showed that using such carefully produced climatic maps would be beneficial in classifying, assessing, and interpreting the remote sensed agricultural-related variables.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3