A Nyström-Based Low-Complexity Algorithm with Improved Effective Array Aperture for Coherent DOA Estimation in Monostatic MIMO Radar

Author:

Ma TengORCID,Du Jiang,Shao Huaizong

Abstract

In this paper, we propose a computationally efficient algorithm with improved effective aperture for coherent angle estimation in a monostatic multiple-input multiple-output (MIMO) radar. First, the direction matrix of MIMO radar is mapped into a low-dimensional matrix of virtual uniform linear array (ULA). Then, an augmented data expansion matrix with improved effective aperture is obtained by exploiting the Vandermonde-like structure of the low-dimensional direction matrix and radar cross section (RCS) matrix to enlarge the aperture of the array. Next, a unitary transformation is used to transform the augmented matrix into a real value and the approximate signal subspace of the augmented matrix is obtained by the Nyström method, which can reduce the computational complexity. The eigenvectors of the approximate signal subspace are used to reconstruct the matrix for direct decorrelation processing. Finally, direction of arrivals (DOAs) can be estimated faster by utilizing the unitary ESPRIT algorithm since the rotation invariance of the extended reconstruction matrix still exists. The proposed algorithm has a lower total computational complexity, and the estimation accuracy is improved by utilizing real values and enlarging the array aperture for estimation. Several theoretical analyses and simulation results confirm the effectiveness and advantages of the proposed method.

Funder

National Natural Science Foundation of China

University Innovation Team Project Fund of Sichuan Provincial Department of Education

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference44 articles.

1. On parameter identifiability of MIMO radar;Li;IEEE Signal Process. Lett.,2007

2. MIMO Radar with Colocated Antennas

3. MIMO Radar with Widely Separated Antennas

4. Overview on the target angle estimation technologies for MIMO radar;Zhai;Radar Sci. Technol.,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3