Abstract
Seagrass meadows are a key ecosystem of the Great Barrier Reef World Heritage Area, providing one of the natural heritage attributes underpinning the reef’s outstanding universal value. We reviewed approaches employed to date to create maps of seagrass meadows in the optically complex waters of the Great Barrier Reef and explored enhanced mapping approaches with a focus on emerging technologies, and key considerations for future mapping. Our review showed that field-based mapping of seagrass has traditionally been the most common approach in the GBRWHA, with few attempts to adopt remote sensing approaches and emerging technologies. Using a series of case studies to harness the power of machine- and deep-learning, we mapped seagrass cover with PlanetScope and UAV-captured imagery in a variety of settings. Using a machine-learning pixel-based classification coupled with a bootstrapping process, we were able to significantly improve maps of seagrass, particularly in low cover, fragmented and complex habitats. We also used deep-learning models to derive enhanced maps from UAV imagery. Combined, these lessons and emerging technologies show that more accurate and efficient seagrass mapping approaches are possible, producing maps of higher confidence for users and enabling the upscaling of seagrass mapping into the future.
Subject
General Earth and Planetary Sciences
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献