Author:
Yu Tiantian,Chandrasekar V.,Xiao Hui,Yang Ling,Luo Li,Li Xiang
Abstract
The microphysical parameters of snowfall directly impact hydrological and atmospheric models. During the International Collaborative Experiment hosted at the Pyeongchang 2018 Olympic and Paralympic Winter Games (ICE-POP 2018), dual-frequency radar retrievals of particle size distribution (PSD) parameters were produced and assessed over complex terrain. The NASA Dual-frequency Dual-polarized Doppler Radar (D3R) and a collection of second-generation Particle Size and Velocity (PARSIVEL2) disdrometer observations were used to develop retrievals. The conventional look-up table method (LUT) and random forest method (RF) were applied to the disdrometer data to develop retrievals for the volume-weighted mean diameter (Dm), the shape factor (mu), the normalized intercept parameter (Nw), the ice water content (IWC), and the snowfall rate (S). Evaluations were performed between the D3R radar and disdrometer observations using these two methods. The mean errors of the retrievals based on the RF method were small compared with those of the LUT method. The results indicate that the RF method is a promising way of retrieving microphysical parameters, because this method does not require any assumptions about the PSD of snowfall.
Subject
General Earth and Planetary Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献