No Cell Left behind: Automated, Stochastic, Physics-Based Tracking of Every Cell in a Dense, Growing Colony

Author:

Pham Huy,Shehada Emile R.,Stahlheber Shawna,Pandey Kushagra,Hayes Wayne B.ORCID

Abstract

Motivation: Precise tracking of individual cells—especially tracking the family lineage, for example in a developing embryo—has widespread applications in biology and medicine. Due to significant noise in microscope images, existing methods have difficulty precisely tracking cell activities. These difficulties often require human intervention to resolve. Humans are helpful because our brain naturally and automatically builds a simulation “model” of any scene that we observe. Because we understand simple truths about the world—for example cells can move and divide, but they cannot instantaneously move vast distances—this model “in our heads” helps us to severely constrain the possible interpretations of what we see, allowing us to easily distinguish signal from noise, and track the motion of cells even in the presence of extreme levels of noise that would completely confound existing automated methods. Results: Here, we mimic the ability of the human brain by building an explicit computer simulation model of the scene. Our simulated cells are programmed to allow movement and cell division consistent with reality. At each video frame, we stochastically generate millions of nearby “Universes” and evolve them stochastically to the next frame. We then find and fit the best universes to reality by minimizing the residual between the real image frame and a synthetic image of the simulation. The rule-based simulation puts extremely stringent constraints on possible interpretations of the data, allowing our system to perform far better than existing methods even in the presense of extreme levels of image noise. We demonstrate the viability of this method by accurately tracking every cell in a colony that grows from 4 to over 300 individuals, doing about as well as a human can in the difficult task of tracking cell lineages.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3