Diffusion in Phase Space as a Tool to Assess Variability of Vertical Centre-of-Mass Motion during Long-Range Walking

Author:

Boulanger Nicolas1ORCID,Buisseret Fabien234ORCID,Dehouck Victor15ORCID,Dierick Frédéric267ORCID,White Olivier5

Affiliation:

1. Physique de l’Univers, Champs et Gravitation, Université de Mons—UMONS, 20 Place du Parc, 7000 Mons, Belgium

2. CeREF, Chaussée de Binche 159, 7000 Mons, Belgium

3. Forme and Fonctionnement Humain Lab, Department of Physical Therapy, Haute Ecole Louvain en Hainaut, Rue Trieu Kaisin 136, 6061 Montignies sur Sambre, Belgium

4. Service de Physique Nucléaire et Subnucléaire, UMONS Research Institute for Complex Systems, Université Mons, 20 Place du Parc, 7000 Mons, Belgium

5. INSERM-U1093 Cognition, Action, and Sensorimotor Plasticity, Université de Bourgogne, Campus Universitaire, BP 27877, 21078 Dijon, France

6. Laboratoire d’Analyse du Mouvement et de la Posture (LAMP), Centre National de Réécation Fonctionnelle et de Réadaptation—Rehazenter, Rue André Vésale 1, 2674 Luxembourg, Luxembourg

7. Faculté des Sciences de la Motricité, Univercité Catholique Louvain (UCLouvain), Place Pierre de Coubertin 1-2, 1348 Ottignies-Louvain-la-Neuve, Belgium

Abstract

When a Hamiltonian system undergoes a stochastic, time-dependent anharmonic perturbation, the values of its adiabatic invariants as a function of time follow a distribution whose shape obeys a Fokker–Planck equation. The effective dynamics of the body’s centre-of-mass during human walking is expected to represent such a stochastically perturbed dynamical system. By studying, in phase space, the vertical motion of the body’s centre-of-mass of 25 healthy participants walking for 10 min at spontaneous speed, we show that the distribution of the adiabatic invariant is compatible with the solution of a Fokker–Planck equation with a constant diffusion coefficient. The latter distribution appears to be a promising new tool for studying the long-range kinematic variability of walking.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference45 articles.

1. Landau, L., and Lifchitz, E. (1988). Physique Théorique, Tome 1: Mécanique, Éditions MIR.

2. On conservation of conditionally periodic motions for a small change in Hamilton’s function;Kolmogorov;Dokl. Akad. Nauk SSSR,1954

3. Casati, G., and Ford, J. (1979). Stochastic Behavior in Classical and Quantum Hamiltonian Systems, Springer.

4. Proof of a theorem of A.N. Kolmogorov on the invariance of quadi-periodic motions under small perturbations of the hamiltonian;Russ. Math. Surv.,1963

5. On invariant curves of area-preserving mappings of an annulus;Nachr. Akad. Wiss. Göttingen II Math.-Phys. Kl.,1962

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3