Effects of an Interchain Disulfide Bond on Tropomyosin Structure: A Molecular Dynamics Study

Author:

Koubassova Natalia A.,Bershitsky Sergey Y.,Tsaturyan Andrey K.ORCID

Abstract

Tropomyosin (Tpm) is a coiled-coil actin-binding dimer protein that participates in the regulation of muscle contraction. Both Tpm chains contain Cys190 residues which are normally in the reduced state, but form an interchain disulfide bond in failing heart. Changes in structural and functional properties of Tpm and its complexes with actin upon disulfide cross-linking were studied using various experimental methods. To understand the molecular mechanism underlying these changes and to reveal the possible mechanism of the involvement of the cross-linking in heart failure, molecular dynamics (MD) simulations of the middle part of Tpm were performed in cross-linked and reduced states. The cross-linking increased bending stiffness of Tpm assessed from MD trajectories at 27 °C in agreement with previous experimental observations. However, at 40 °C, the cross-linking caused a decrease in Tpm stiffness and a significant reduction in the number of main chain hydrogen bonds in the vicinity of residues 133 and 134. These data are in line with observations showing enhanced thermal unfolding of the least stable part of Tpm at 30–40 °C and accelerated trypsin cleavage at residue 133 at 40 °C (but not at 27 °C) upon cross-linking. These results allow us to speculate about the possible mechanism of involvement of Tpm cross-linking to heart failure pathogenesis.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3