Prediction of the Toxicity of Binary Mixtures by QSAR Approach Using the Hypothetical Descriptors

Author:

Wang Ting,Tang Lili,Luan Feng,Cordeiro M. Natália D. S.ORCID

Abstract

Organic compounds are often exposed to the environment, and have an adverse effect on the environment and human health in the form of mixtures, rather than as single chemicals. In this paper, we try to establish reliable and developed classical quantitative structure–activity relationship (QSAR) models to evaluate the toxicity of 99 binary mixtures. The derived QSAR models were built by forward stepwise multiple linear regression (MLR) and nonlinear radial basis function neural networks (RBFNNs) using the hypothetical descriptors, respectively. The statistical parameters of the MLR model provided were N (number of compounds in training set) = 79, R2 (the correlation coefficient between the predicted and observed activities)= 0.869, LOOq2 (leave-one-out correlation coefficient) = 0.864, F (Fisher’s test) = 165.494, and RMS (root mean square) = 0.599 for the training set, and Next (number of compounds in external test set) = 20, R2 = 0.853, qext2 (leave-one-out correlation coefficient for test set)= 0.825, F = 30.861, and RMS = 0.691 for the external test set. The RBFNN model gave the statistical results, namely N = 79, R2 = 0.925, LOOq2 = 0.924, F = 950.686, RMS = 0.447 for the training set, and Next = 20, R2 = 0.896, qext2 = 0.890, F = 155.424, RMS = 0.547 for the external test set. Both of the MLR and RBFNN models were evaluated by some statistical parameters and methods. The results confirm that the built models are acceptable, and can be used to predict the toxicity of the binary mixtures.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3