Abstract
In this paper, we introduce the general fractional integrals and derivatives of arbitrary order and study some of their basic properties and particular cases. First, a suitable generalization of the Sonine condition is presented, and some important classes of the kernels that satisfy this condition are introduced. Whereas the kernels of the general fractional derivatives of arbitrary order possess integrable singularities at the point zero, the kernels of the general fractional integrals can—depending on their order—be both singular and continuous at the origin. For the general fractional integrals and derivatives of arbitrary order with the kernels introduced in this paper, two fundamental theorems of fractional calculus are formulated and proved.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Reference21 articles.
1. Oplösning af et par opgaver ved hjelp af bestemte integraler;Abel;Mag. Naturvidenskaberne,1823
2. Auflösung einer mechanischen Aufgabe;Abel;J. Die Reine Angew. Math.,1826
3. Niels Henrik Abel and the birth of fractional calculus
4. Sur la généralisation d’une formule d’Abel
5. Evolutionary Integral Equations and Applications;Prüss,1993
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献