Extreme Gradient Boosting for Recommendation System by Transforming Product Classification into Regression Based on Multi-Dimensional Word2Vec

Author:

Park Se-JoonORCID,Kang Chul-UngORCID,Byun Yung-CheolORCID

Abstract

Now that untact services are widespread and worldwide, the number of users visiting online shopping malls has increased. For example, the recommendation systems in Netflix, Amazon, etc., have gained a lot of attention by attracting many users and have made large profit by recommending suitable products to their users. In the paper, we conduct a study to enhance recommendation accuracy using Word2Vec, widely used in natural language processing. We collect user shopping history with personal click preference information of product items as data, representing a document for natural language processing. The sequence of product item clicks is fed into the Word2Vec technology algorithm to obtain the vectors symmetrically representing all of the product items clicked by users. Training and test data have a series of vectors representing a sequence of the clicked product items as inputs and a purchased product as a target. Machine learning models recommend a product as a symmetric vector for each input and calculate the similarity among the recommended vectors and all other registered products they sell in the system to recommend multiple products as final recommendation results. We use XGBoost regressor and classifier models to recommend some products that users would like and evaluate the recommendation accuracy. A finally recommended product by the models is a vector, and the system recommends some more products by calculating the similarity as mentioned above. We evaluated the classifier model’s recommendation accuracy without Word2Vec encoding first and then with the Word2Vec technique. Meanwhile, we can represent the products with single or multiple dimensional vectors. We noted that the recommendation accuracy increases when we use multiple dimensions of Word2Vec vectors from the experiments. We also evaluated the performances when the system recommends one or multiple products. For the recommendation of multiple products (five here), a regression model has higher accuracy than a classification model in all dimensions of vectors.

Funder

Korea Institute for Advancement of Technology

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3