Abstract
Fuzzy-rough cognitive networks (FRCNs) are interpretable recurrent neural networks, primarily designed for solving classification problems. Their structure is simple and transparent, while the performance is comparable to the well-known black-box classifiers. Although there are many applications on fuzzy cognitive maps and recently for FRCNS, only a very limited number of studies discuss the theoretical issues of these models. In this paper, we examine the behaviour of FRCNs viewing them as discrete dynamical systems. It will be shown that their mathematical properties highly depend on the size of the network, i.e., there are structural differences between the long-term behaviour of FRCN models of different size, which may influence the performance of these modelling tools.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献