Low-Resource Named Entity Recognition via the Pre-Training Model

Author:

Chen Siqi,Pei YijieORCID,Ke ZunwangORCID,Silamu Wushour

Abstract

Named entity recognition (NER) is an important task in the processing of natural language, which needs to determine entity boundaries and classify them into pre-defined categories. For low-resource languages, most state-of-the-art systems require tens of thousands of annotated sentences to obtain high performance. However, there is minimal annotated data available about Uyghur and Hungarian (UH languages) NER tasks. There are also specificities in each task—differences in words and word order across languages make it a challenging problem. In this paper, we present an effective solution to providing a meaningful and easy-to-use feature extractor for named entity recognition tasks: fine-tuning the pre-trained language model. Therefore, we propose a fine-tuning method for a low-resource language model, which constructs a fine-tuning dataset through data augmentation; then the dataset of a high-resource language is added; and finally the cross-language pre-trained model is fine-tuned on this dataset. In addition, we propose an attention-based fine-tuning strategy that uses symmetry to better select relevant semantic and syntactic information from pre-trained language models and apply these symmetry features to name entity recognition tasks. We evaluated our approach on Uyghur and Hungarian datasets, which showed wonderful performance compared to some strong baselines. We close with an overview of the available resources for named entity recognition and some of the open research questions.

Funder

National Key Research and Development Program of China

National Language Commission Research Project

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference40 articles.

1. Improving Low Resource Named Entity Recognition using Cross-lingual Knowledge Transfer;Feng;IJCAI,2018

2. Neural cross-lingual named entity recognition with minimal resources;Xie;arXiv,2018

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3