Electrodynamics of Power Losses in the Devices of Inter-Substation Zones of AC Electric Traction Systems

Author:

Nikitenko AnatoliiORCID,Kostin Mykola,Mishchenko Tetiana,Hoholyuk Oksana

Abstract

This article presents a new method for the estimation of active power losses based on a “field” approach, i.e., on the theory of the electromagnetic field and the theory of propagation of electromagnetic waves in a dielectric medium. Electromagnetic waves are assumed to transmit energy from the traction substation to electric rolling stock through the airspace of the inter-substation zone (i.e., not through the wires of the traction network) and meet electrically conductive surfaces on their way. The waves are partially reflected from the surfaces and partially penetrate them, thus creating thermal losses, the determination of which is the main task of this article. The analytical expressions for specific losses of active power are obtained by solving the system of Maxwell’s equations. Calculations of specific power losses in the catenary, rails, roofs, and bottoms of carriages and electric locomotives are performed. Power losses in carriages and electric locomotives are found to be at least 7%. A comparative assessment of the magnitude of total power losses of different types obtained by the “field” and “circuit” approaches is provided, which has established that “conditional” losses correspond to losses in rails, train carriages, and electric locomotives.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Determining the Power Supply Quality of the Diode Locomotive in the Electric Traction System;Modelling;2024-09-05

2. Digital Graphic Technology of Electrical Circuits in Transformer Station Based on Wireless Intelligent Network;2023 International Conference on Computer Simulation and Modeling, Information Security (CSMIS);2023-11-15

3. Development of a UAV-based System for Technical Diagnostics of Overhead Power Lines;2023 24th International Conference on Computational Problems of Electrical Engineering (CPEE);2023-09-10

4. Advances in Electric Traction System—Special Issue;Energies;2023-01-27

5. A Novel LCOT Control Strategy for Self-Driving Electric Mobile Robots;Energies;2022-12-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3