Experimental Assessment of the Impact of Replacing Diesel Fuel with CNG on the Concentration of Harmful Substances in Exhaust Gases in a Dual Fuel Diesel Engine

Author:

Karczewski MirosławORCID,Szamrej GrzegorzORCID,Chojnowski JanuszORCID

Abstract

The problem of global warming and related climate change, as well as rising oil prices, is driving the implementation of ideas that not only reduce the consumption of liquid fuels, but also reduce greenhouse gas emissions. One of them is the use of natural gas as an energy source. It is a hydrocarbon fuel with properties allowing the reduction of CO2 emissions during its combustion. Therefore, solutions are being implemented that allow natural gas to be supplied to means of transport, which are trucks of various categories and purposes. This article presents the results of tests of an engine from a used semi-truck, to which an innovative compressed natural gas (CNG) supply system was installed. This installation (both hardware and software), depending on the engine operating conditions, enables mass replacement by natural gas (up to 90%) of the basic fuel—diesel oil. During the tests, on the basis of the obtained results, the influence of the diesel fuel/CNG exchange ratio under various engine operating conditions on the concentration of toxic CO2, CO, NO, NO2, CH4, C2H6, NMHC, NH3 and exhaust smoke was assessed. The test results confirm that, compared to conventional fueling, the diesel/CNG-fueled engine allows for a significant reduction in CO2 concentration even in a car operated for several years with diesel fuel and with high mileage. The use of a non-factory installation significantly increased the concentration of methane CH4, nitrogen dioxide NO2 and carbon monoxide CO in the exhaust gas. It was found that the smoke content and the temperature of exhaust gases did not decrease with increasing ratio of fuel replacement. The concentration of CO, NOX, CH4 and NMHC was increased, while the concentration of CO2, C2H6, NH3 and the consumption of diesel fuel by the engine, decreased significantly. The innovation of the research is based on the use of a modern and unique engine gas fuel system control system where the original fuel supply system with unit pumps is able to reduce diesel oil consumption by up to 90%.

Funder

Military University of Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference49 articles.

1. Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines

2. Dual-Fuel Diesel Engines;Karim,2015

3. The phenomenon of knocking combustion and the impact on the fuel exchange and the output parameters of the diesel engine operating in the dual-fuel mode (Diesel-CNG);Chojnowski;Proceedings of the NAŠE MORE 2021, 2nd International Conference of Maritime Science & Technology,2021

4. Silniki Spalinowe Zasada działania, Zastosowania;Jeż,2008

5. Wpływ dodatku gazu ziemnego na wybrane parametry pracy silnika Fiat 1.3 MultiJet zasilanego dwupaliwowo;Stelmasiak;Combust. Engines,2015

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3