A Novel Single-Phase Shunt Active Power Filter with a Cost Function Based Model Predictive Current Control Technique

Author:

Aljafari BelqasemORCID,Rameshkumar Kanagavel,Indragandhi VairavasundaramORCID,Ramachandran Selvamathi

Abstract

For a single-phase Shunt Active Power Filter (SAPF) with a two-step prediction, this research presents a modified current control based on a Model Predictive Current Control (MPCC) technique. An H-bridge inverter, a DC link capacitor, and a filter inductor comprise the single-phase SAPF topology. The SAPF reference current is computed using the DC-link capacitor voltage regulation-based PI control technique. The weighting factor-based model predictive current controller is used to track the current commands. The essential dynamic index for evaluating waveform quality is the Total Harmonic Distortion (THD) of a source current and switching frequency of power switches. The conventional methods the THD and switching frequency are not considered as an objective function, so that a weighting factor-based MPCC technique is used to obtain a good compromise between the THD of the source current and switching frequency of power switches. Through MATLAB simulation and experimentation with the Cyclone-IV EP4CE30F484 FPGA board, the usefulness of the proposed control technique is proven. As compared with hysteresis, predictive PWM, and conventional MPCC control methods, the cost function-based MPCC algorithm provides a lower switching frequency (13.4 kHz) with an optimal source current THD value.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference20 articles.

1. Topological aspects of power quality improvement techniques: A comprehensive overview

2. Power Quality: Problems and Mitigation Techniques;Singh,2014

3. Soft Computing Techniques for the Control of an Active Power Filter

4. A universal active power filter for single-phase reactive power and harmonic compensation;Singh;Proceedings of the Power Quality,1998

5. Generalised single-phase p-q theory for active power filtering: simulation and DSP-based experimental investigation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3