Permeability Models of Hydrate-Bearing Sediments: A Comprehensive Review with Focus on Normalized Permeability

Author:

Xu JianchunORCID,Bu ZiweiORCID,Li Hangyu,Wang Xiaopu,Liu ShuyangORCID

Abstract

Natural gas hydrates (NGHs) are regarded as a new energy resource with great potential and wide application prospects due to their tremendous reserves and low CO2 emission. Permeability, which governs the fluid flow and transport through hydrate-bearing sediments (HBSs), directly affects the fluid production from hydrate deposits. Therefore, permeability models play a significant role in the prediction and optimization of gas production from NGH reservoirs via numerical simulators. To quantitatively analyze and predict the long-term gas production performance of hydrate deposits under distinct hydrate phase behavior and saturation, it is essential to well-establish the permeability model, which can accurately capture the characteristics of permeability change during production. Recently, a wide variety of permeability models for single-phase fluid flowing sediment have been established. They typically consider the influences of hydrate saturation, hydrate pore habits, sediment pore structure, and other related factors on the hydraulic properties of hydrate sediments. However, the choice of permeability prediction models leads to substantially different predictions of gas production in numerical modeling. In this work, the most available and widely used permeability models proposed by researchers worldwide were firstly reviewed in detail. We divide them into four categories, namely the classical permeability models, reservoir simulator used models, modified permeability models, and novel permeability models, based on their theoretical basis and derivation method. In addition, the advantages and limitations of each model were discussed with suggestions provided. Finally, the challenges existing in the current research were discussed and the potential future investigation directions were proposed. This review can provide insightful guidance for understanding the modeling of fluid flow in HBSs and can be useful for developing more advanced models for accurately predicting the permeability change during hydrate resources exploitation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3