Abstract
The increasing deployment of new technologies to contribute to the decarbonization of power systems is imposing new challenges in terms of system dynamics and stability. To deal with different operating and control issues in this sense, and support actual needs, advanced tools and solutions are required. Therefore, this paper presents a digital twin of a dynamic hardware emulator that can be used for controller hardware in the loop (CHIL) testing and is based on a small-scale laboratory system. To build the simulation model, the parameters of involved synchronous machines, excitation systems, prime movers and transmission lines have been identified and then compared to laboratory measurements to assess the accuracy of the digital twin. Static and dynamic accuracy have been investigated and an overall good accuracy can be shown with the help of quantification of errors. Furthermore, a case study is presented where the digital twin was used to design a controller to damp inter-area oscillations with the help of wide area measurements. This controller was then implemented and tested within the dynamic hardware emulator in the laboratory.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献