Experimental and Mechanistic Study of Synergistic Removal of Hg by Evaporation from Desulfurization Wastewater

Author:

Hu Bin,Chen CongORCID,Yi Yang,Jiang Shouxi,Liu Xiaosong

Abstract

The flue evaporation of desulfurization wastewater can solve the problem that it is difficult to remove some heavy metal ions and chloride ions by conventional methods. A large amount of chloride ions in desulfurization wastewater can also promote the catalytic oxidation removal of Hg in the flue gas. The migration character of chloride ions in the flue evaporation process of desulfurization wastewater was studied by using the coal-fired thermal state experimental platform. The concentrations of Hg0 and Hg2+ in the flue gas at the inlet and outlet of selective catalytic reduction denitration (SCR), electrostatic precipitator (ESP), and wet desulfurization (WFGD) devices were tested, and the synergistic removal of traditional pollutant removal equipment by flue evaporation of desulfurization wastewater was analyzed. The influence of Hg and the effect of the evaporation of desulfurization wastewater at different positions on the removal of Hg in the flue gas were compared and analyzed, and the catalytic mechanism of Hg on the SCR surface was further revealed. The results show that 10% chloride ions enter the flue gas after the desulfurization wastewater evaporates. The content of chlorine elements and evaporation temperature influence the evaporation of desulfurization wastewater. The mechanism of SCR catalytic oxidation of Hg0 was explored; oxygen atoms have catalytic oxidation effects on Hg0 at different positions in the V2O5 molecule in SCR; and chloride ions can enhance the catalytic oxidation of Hg0 by V2O5. The intermediate product HgCl is generated, which is finally converted into HgCl2. The oxidation efficiency of Hg0 in electrostatic precipitation (ESP) is increased from 3% to 18%, and the removal efficiency of Hg is increased from 5% to 10%. The removal efficiency of Hg2+ in WFGD is basically maintained at approximately 85%. In addition, a small amount of Hg2+ was restored to Hg0 in WFGD. The removal efficiency of Hg0 in the flue gas of evaporative desulfurization wastewater before SCR is 65%, and the removal efficiency of gaseous Hg is 62%. When the evaporative desulfurization wastewater before ESP, the synergistic removal efficiency of Hg0 is 39%, and the gaseous Hg removal efficiency is 39%, and the removal efficiency of Hg is 40%. Evaporation of the desulfurization wastewater before SCR was more conducive to the coordinated removal of Hg by the device.

Funder

the Natural Science Fund for Colleges and Universities in Jiangsu Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3