Optimization and Control of Renewable Energy Integrated Cogeneration Plant Operation by Design of Suitable Energy Storage System

Author:

Manikyala Rao Ankem V. R. N. B.ORCID,Singh Amit KumarORCID

Abstract

Cogeneration is preferred mostly in process industries where both thermal and electrical energies are required. Cogeneration plants are more efficient than utilizing the thermal and electrical energies independently. Present government policies in India made renewable energy generation mandatory in order to minimize fossil fuels consumption and to protect the environment. Hence, many cogeneration plants have been integrated with renewable energy generation. However, post-integration effects increase and introduce inefficiencies in the operation of cogeneration systems. In this paper, a case study of an identified typical cogeneration plant where renewable energy is integrated is considered. Post operational effects on the plant due to integration of renewable energy (solar) are studied and by practical experimentation through cost-benefit analysis the break-even point beyond which renewable energy generation introduces inefficiencies is estimated. Next, a systematic methodology is developed based on the heuristic forward-chaining approach technique to establish the breakeven point. An algorithm/flow chart is developed using an iterative method and executed through MATLAB using practical data from the industry. Suggestions for suitable energy storage devices to store renewable energy beyond the breakeven point, based on a techno-economic analysis of energy storage technologies, are made. Further, the battery energy storage system is designed and the capacity is estimated based on the practical solar irradiance data. A rule-based algorithm is developed to control the charge and discharge cycles of battery storage based on predefined conditions. The payback period is estimated based on the expected monetary benefits of proposed energy storage and the economy of the proposed system is ensured. The post-operational issues are resolved by introducing energy storage. The methodology presented in this paper can be a guiding tool for optimization of various renewable-energy-integrated cogeneration systems.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference39 articles.

1. Case study on Renewable energy integration (Solar) challenges with Captive/Cogeneration plants and optimization of plant operation;Manikyala Rao;Proceedings of the 3rd International Conference on Intelligent Circuits and Systems, (ICICS 2020),2020

2. Optimal Coordination of CHP Plants with Renewable Energy Generation Considering Substitutability between Electricity and Heat

3. Optimization of energy production of a CHP plant with heat Storage;Abdollahi;Proceedings of the IEEE Green Energy and Systems Conference (IGESC 2014),2014

4. Investigation of Different Operation Strategies to Provide Balance Energy With an Industrial Combined Heat and Power Plant Using Dynamic Simulation

5. Special Issue on Exact and Heuristic Scheduling Algorithms

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3