Abstract
Cogeneration is preferred mostly in process industries where both thermal and electrical energies are required. Cogeneration plants are more efficient than utilizing the thermal and electrical energies independently. Present government policies in India made renewable energy generation mandatory in order to minimize fossil fuels consumption and to protect the environment. Hence, many cogeneration plants have been integrated with renewable energy generation. However, post-integration effects increase and introduce inefficiencies in the operation of cogeneration systems. In this paper, a case study of an identified typical cogeneration plant where renewable energy is integrated is considered. Post operational effects on the plant due to integration of renewable energy (solar) are studied and by practical experimentation through cost-benefit analysis the break-even point beyond which renewable energy generation introduces inefficiencies is estimated. Next, a systematic methodology is developed based on the heuristic forward-chaining approach technique to establish the breakeven point. An algorithm/flow chart is developed using an iterative method and executed through MATLAB using practical data from the industry. Suggestions for suitable energy storage devices to store renewable energy beyond the breakeven point, based on a techno-economic analysis of energy storage technologies, are made. Further, the battery energy storage system is designed and the capacity is estimated based on the practical solar irradiance data. A rule-based algorithm is developed to control the charge and discharge cycles of battery storage based on predefined conditions. The payback period is estimated based on the expected monetary benefits of proposed energy storage and the economy of the proposed system is ensured. The post-operational issues are resolved by introducing energy storage. The methodology presented in this paper can be a guiding tool for optimization of various renewable-energy-integrated cogeneration systems.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献