Author:
Chen Wangsheng,Huang Dongping,Zhao Bo,Hu Fali,Qin Linbo,Wang Shijie
Abstract
Utilizing sintered ore catalysts (SOC), which are used in the sintering industry for NH3-SCR denitration, is a feasible and economical way to reduce NOx emission in sintering flue gas. Therefore, in order to enhance the denitration efficiency of SOC, sintered ore modified by sulfuric acid and sulfated sintered ore catalysts (SSOC-5) were prepared. Kinetic analyses of these two catalysts for denitration were carried out in this study. On the basis of eliminating the influence of internal and external diffusion, the relationship between reactants and reaction rate was studied by a power function kinetic model. This clarified that the adsorption ability of the acid-modified catalyst for reaction gas adsorption was stronger than that of sintered ore catalysts, and the reaction rate was also accelerated. The NO, NH3 and O2 reaction orders of SOC were 1, 0.3 and 0.16 at 250~300 °C, while these values of SSOC-5 were 0.8, 0.06 and 0.09, respectively. The apparent activation energy of SOC was 83.66 kJ/mol, while the value of SSOC-5 decreased to 59.93 kJ/mol.
Funder
Hubei Technological Innovation Special Fund
National Natural Science Foundation of China
Hubei Science and Technology Innovation Plan
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction