On Two Measure-Theoretic Aspects of the Full Bayesian Significance Test for Precise Bayesian Hypothesis Testing †

Author:

Kelter RikoORCID

Abstract

The Full Bayesian Significance Test (FBST) has been proposed as a convenient method to replace frequentist p-values for testing a precise hypothesis. Although the FBST enjoys various appealing properties, the purpose of this paper is to investigate two aspects of the FBST which are sometimes observed as measure-theoretic inconsistencies of the procedure and have not been discussed rigorously in the literature. First, the FBST uses the posterior density as a reference for judging the Bayesian statistical evidence against a precise hypothesis. However, under absolutely continuous prior distributions, the posterior density is defined only up to Lebesgue null sets which renders the reference criterion arbitrary. Second, the FBST statistical evidence seems to have no valid prior probability. It is shown that the former aspect can be circumvented by fixing a version of the posterior density before using the FBST, and the latter aspect is based on its measure-theoretic premises. An illustrative example demonstrates the two aspects and their solution. Together, the results in this paper show that both of the two aspects which are sometimes observed as measure-theoretic inconsistencies of the FBST are not tenable. The FBST thus provides a measure-theoretically coherent Bayesian alternative for testing a precise hypothesis.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3