Predicting Phase 1 Lymphoma Clinical Trial Durations Using Machine Learning: An In-Depth Analysis and Broad Application Insights

Author:

Long Bowen1ORCID,Lai Shao-Wen2,Wu Jiawen1,Bellur Srikar1

Affiliation:

1. Department of Analytics, Harrisburg University of Science and Technology, Harrisburg, PA 17101, USA

2. Zippin, Mill Valley, CA 94941, USA

Abstract

Lymphoma diagnoses in the US are substantial, with an estimated 89,380 new cases in 2023, necessitating innovative treatment approaches. Phase 1 clinical trials play a pivotal role in this context. We developed a binary predictive model to assess trial adherence to expected average durations, analyzing 1089 completed Phase 1 lymphoma trials from clinicaltrials.gov. Using machine learning, the Random Forest model demonstrated high efficacy with an accuracy of 0.7248 and an ROC-AUC of 0.7677 for lymphoma trials. The difference in the accuracy level of the Random Forest is statistically significant compared to the other alternative models, as determined by a 95% confidence interval on the testing set. Importantly, this model maintained an ROC-AUC of 0.7701 when applied to lung cancer trials, showcasing its versatility. A key insight is the correlation between higher predicted probabilities and extended trial durations, offering nuanced insights beyond binary predictions. Our research contributes to enhanced clinical research planning and potential improvements in patient outcomes in oncology.

Publisher

MDPI AG

Subject

General Medicine

Reference49 articles.

1. Cancer statistics, 2003;Siegel;CA Cancer J. Clin.,2023

2. Trends in the risks and benefits to patients with cancer participating in phase 1 clinical trials;Roberts;JAMA,2004

3. The role of machine learning in clinical research: Transforming the future of evidence generation;Weissler;Trials,2021

4. Machine Learning Prediction of Clinical Trial Operational Efficiency;Wu;AAPS J.,2022

5. Beauchamp, T.L., and Childress, J.F. (2001). Principles of Biomedical Ethics, Oxford University Press. Available online: https://books.google.com/books?hl=en&lr=&id=_14H7MOw1o4C&oi=fnd&pg=PR9&dq=Beauchamp,+T.+L.,+%26+Childress,+J.+F.+(2013).+Principles+of+biomedical+ethics+(7th+ed.).+New+York:+Oxford+University+Press.&ots=1x_n4OBqWq&sig=pCzR4XfW0iDFmXEFsOajo6dGdU4.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3