Surface Water–Groundwater Transformation Patterns in the Jianghan Plain after the Impoundment of the Three Gorges Project and the Opening of the Yangtze-to-Hanjiang Water Transfer Project

Author:

Feng Jinping1,Shao Dongguo1,Gu Wenquan1,Liu Luguang2,Dong Wei2,Miao Donghao1

Affiliation:

1. State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430000, China

2. Hubei Water Resources Research Institute, Wuhan 430000, China

Abstract

Understanding the law of surface water–groundwater conversion in the face of high-intensity human activities is still a challenge. In this study, we employed statistical and system dynamics methods to investigate the surface water–groundwater conversion law in the Jianghan Plain following the impoundment of the Three Gorges Project (TGP) and the Yangtze-to-Hanjiang Water Transfer Project (YHWTP). The groundwater level’s long data set was used for the first time to study the water level change and water exchange in the research region after the impoundment of the TGP and the delivery of water from the YHWTP. The findings suggest a significant decrease in the interannual trend of the surface water level and groundwater level in the research region. It was observed that a 1m rise in the surface water level can lead to a 0.11–0.38 m rise in the groundwater level. The water level fluctuation coefficients of the surface water level and groundwater level are influenced by the impoundment of the TGP and the water delivery from the YHWTP, causing them to increase and decrease, respectively. In general, the surface water recharges the groundwater in the studied region. The water exchanges between the surface water and groundwater in the Yangtze River’s main stream, the middle region of the Hanjiang Plain, and the lower reaches of the Hanjiang River are, on average, 10−2 m3/(d·m), 10−5 m3/(d·m), and 10−3 m3/(d·m) orders of magnitude, respectively. The water exchange in the Yangtze River’s main stream was reduced after TGP impoundment, and it was enhanced following YHWTP water delivery.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3