Affiliation:
1. State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430000, China
2. Hubei Water Resources Research Institute, Wuhan 430000, China
Abstract
Understanding the law of surface water–groundwater conversion in the face of high-intensity human activities is still a challenge. In this study, we employed statistical and system dynamics methods to investigate the surface water–groundwater conversion law in the Jianghan Plain following the impoundment of the Three Gorges Project (TGP) and the Yangtze-to-Hanjiang Water Transfer Project (YHWTP). The groundwater level’s long data set was used for the first time to study the water level change and water exchange in the research region after the impoundment of the TGP and the delivery of water from the YHWTP. The findings suggest a significant decrease in the interannual trend of the surface water level and groundwater level in the research region. It was observed that a 1m rise in the surface water level can lead to a 0.11–0.38 m rise in the groundwater level. The water level fluctuation coefficients of the surface water level and groundwater level are influenced by the impoundment of the TGP and the water delivery from the YHWTP, causing them to increase and decrease, respectively. In general, the surface water recharges the groundwater in the studied region. The water exchanges between the surface water and groundwater in the Yangtze River’s main stream, the middle region of the Hanjiang Plain, and the lower reaches of the Hanjiang River are, on average, 10−2 m3/(d·m), 10−5 m3/(d·m), and 10−3 m3/(d·m) orders of magnitude, respectively. The water exchange in the Yangtze River’s main stream was reduced after TGP impoundment, and it was enhanced following YHWTP water delivery.
Funder
the National Natural Science Foundation of China
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献