Abstract
Small leaks in water distribution networks have been a major problem both economically and environmentally, as they go undetected for years. We model the signature of small leaks as a unique Directed Acyclic Graph, called the Lean Graph, to find the best places for k sensors for detecting and locating small leaks. We use the sensors to develop dictionaries that map each leak signature to its location. We quantify leaks by matching out-of-normal flows detected by sensors against records in the selected dictionaries. The most similar records of the dictionaries are used to quantify the leaks. Finally, we investigate how much our approach can tolerate corrupted data due to sensor failures by introducing a subspace voting based quantification method. We tested our method on water distribution networks of literature and simulate small leaks ranging from [0.1, 1.0] liter per second. Our experimental results prove that our sensor placement strategy can effectively place k sensors to quantify single and multiple small leaks and can tolerate corrupted data up to some range while maintaining the performance of leak quantification. These outcomes indicate that our approach could be applied in real water distribution networks to minimize the loss caused by small leaks.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Reference31 articles.
1. The Issues and Challenges of Reducing Non-Revenue Water. Asian Development Bankhttp://hdl.handle.net/11540/1003
2. An Inverse Transient-Based Optimization Approach to Fault Examination in Water Distribution Networks
3. Leaks in Pipe Networks
4. Data Mining (Third Edition). The Morgan Kaufmann Series in Data Management Systems;Jiawei,2012
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献