Short-Term Peak-Shaving Operation of Head-Sensitive Cascaded Hydropower Plants Based on Spillage Adjustment

Author:

Liao Shengli,Zhang Yan,Liu BenxiORCID,Liu Zhanwei,Fang Zhou,Li Shushan

Abstract

There are many cascaded hydropower plants with poor regulation performance and sensitive water heads accompanied by water spillage during the wet season. Faced with the increasing load peak–valley differences, it is necessary to tap the peak-shaving potential of such head-sensitive cascaded hydropower plants (HSCHPs) because relying solely on hydropower plants with better regulation performance for peak shaving is inadequate. To address the modeling, solving, and water spillage treatment difficulties posed by HSCHPs, a new short-term peak-shaving method based on spillage adjustment is introduced. First, fuzzy cluster analysis is used to determine when to release more water spillage by automatically identifying valley periods of the daily load curve. Furthermore, a spillage adjustment strategy, implemented through an easy gate operation, is adopted to readjust the water release during each period of the load curve. The ratio of the water spillage released in advance in a certain period to its total water spillage is defined as the water spillage ratio (WSR) of the period. Finally, a mixed-integer linear programming model linearized by special ordered sets of type two is solved to determine the optimal WSRs, which achieves the optimal peak-shaving effect. HSCHPs in the Hongshui River Basin during the wet season were selected as case studies. The results demonstrate that the proposed method can achieve a good peak-shaving effect without significantly reducing the power generation and adding additional water spillage.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3